
While most people can look at a map of cities and find a good route from one town to the next, a 
computer must be taught how to find these routes. A simple approach might involve slowly 
expanding outwards in all directions, investigating every nearby route before moving farther out 
from the start. However, this approach can be fairly slow as the computer will spend a lot of time
looking west when its ultimate destination is east, and worse, it will need to keep track of all 
those different routes west, quickly running out of memory. A different approach may focus 
solely on moving forever towards its goal when it can, but this can create a problem if a 
mountain range, wall, rough terrain, or other obstacle is in the way. The computer may end up 
having to retrace steps to find a path around the obstacle, resulting in a longer-than-necessary 
route. 

Combining these two concepts of looking at nearby routes first, but giving preference to routes 
that take you closer to your goal is one way you can reduce the pitfalls of each individual 
approach, and the basic idea behind the popular pathfinding algorithm known as “A*”, or “A 
Star” (Russell & Norvig, 2010).

The A* Pathfinding Algorithm

A* is usually comprised of several different components:

A frontier, which is a list of nodes (cities, positions in a game world, or other forms of ‘places’ 
or ‘states’) that are the next available options to start exploring possible routes from (Rios & 
Chaimowicz, 2011). These are usually nodes that are at the ends of already discovered routes. 
The first node that is listed on the frontier before A* even starts running is the node you are 
starting from. 

You may also need a list of nodes that have previously been on the frontier, as a node should 
never return to the frontier once it has been selected to be removed from the frontier list to be 
investigated (Rios & Chaimowicz, 2011). 

A route database of currently known ‘fastest’ routes to each and every node the A* algorithm 
has discovered so far (Rios & Chaimowicz, 2011). It may be useful to think of this as the 
algorithm writing down directions to each city next to the city on a map. An A* algorithm 
traveling from San Francisco to New York City that is currently looking to see if Oklahoma City 
is a good choice of city to drive through would record the fastest route it has found so far from 
San Francisco to Oklahoma City as the only currently known route to Oklahoma City. This way 
if A* needs the route from San Francisco to Nashville, and Oklahoma City might be one city it 
could travel through, it already has the full route from San Francisco to Oklahoma City saved in 
its memory. If a faster route to Oklahoma City or any other node on the map is ever found, A* 
erases the old route and replaces it with the faster one, so it only ever tracks one route per node. 

A method of calculating the true cost of a route to any node discovered so far (Rios & 
Chaimowicz, 2011). You could simply record the total cost of a set of directions to a city when 
you discover that route, or you could record the cost of each individual leg of the journey and 

Copyright: Joel King



add those costs up each time you need the total cost of a known route, or any other option that 
gets you the real, actual cost from the start to any possible destination found so far. 

An estimated remaining cost to go from the end of any
currently known route to the goal, otherwise known as a 
heuristic (Rios & Chaimowicz, 2011). This estimate is
best if it never overestimates the true cost, either in total
remaining distance or in each individual leg of the
remaining journey. Any overestimate may result in A*
ignoring a path that potentially could be shorter than a
different path it’s choosing to explore instead. Returning to
the Oklahoma City example, if you know the route to OKC
and want to decide if OKC is a location worth exploring
from, your heuristic may simply be the straight-line ‘as-
the-crow-flies’ distance from OKC to NYC. Since you
can’t generally go a shorter distance than a straight line,
and roads tend to not be perfectly arrow straight along long
distances, this won’t overestimate the eventual true cost,
but will still come fairly close. The closer you can make your estimates to the eventual true 
answer without going over, the better A* will perform. If the cost you care about is fuel, rather 
than distance, you might do some calculations involving the maximum speeds each state between
OKC and NYC has and its impact on fuel efficiency, multiplied by the distance, or some other 
calculation.

How A* works:

At the beginning, the start of the path is placed on the 
frontier. (Figure 2)

A* then searches through the frontier, looking at each node
listed, and taking the known true cost to reach that node
and adding it to the estimated remaining cost to go from
that node to the goal (Rios & Chaimowicz, 2011). At the
very beginning, the only node on the frontier will likely
have a known true cost of ‘zero’, because it’s the start, and
a high estimated remaining cost. Out of all the options on
the frontier, it selects whichever node has the smallest total
cost, and pulls that node off of the frontier, making sure to
note that that node should never be placed on the frontier
again. 

A* then searches every route out of that selected node (Figure 3), and records directions to each 
and every location it finds, replacing any previously discovered more expensive routes-known 

Copyright: Joel King



with any cheaper ones it finds (Rios & Chaimowicz, 2011). For every destination it finds, it also 
places each of those destinations on the frontier if those nodes have never been on the frontier 
before. 

A* then returns to the step where it searches through the frontier (Figures 4 through 8), looking 
for the node with the cheapest combination of known true cost and estimated remaining cost, and

repeats the above process until the cheapest node it is pulling off of the frontier is the ultimate 
destination goal it was seeking (Rios & Chaimowicz, 2011). This goal (for example, NYC), 
having been placed on the frontier, will have a known route, and that known route will be the 
shortest, cheapest route from the start (San Francisco?) to the goal.

Why A* works: 

Copyright: Joel King



As A* finds routes to destinations, it finds a cost of reaching that destination. The true cost along
that path increases. If that path ends farther from the goal than the step before it, both the true 
cost and estimated remaining cost increase, resulting in a very expensive combination for that 
node, virtually ensuring that route will be one of the last chosen from the frontier. If the node is 
closer to the goal, estimated remaining cost will decrease and the true cost so far will increase. 
Since estimates never overestimate, at best this trade-off will be even, but will often increase in 
true cost more than it decreases in estimated remaining cost. Then, if a particular path is 
expensive (a winding, rough road up and down several mountains), the true cost will increase far 
more than the estimated cost decreases, possibly making a slight detour a far cheaper node to 
look at. 

By continuing to look at only the cheapest ‘best guess’ routes while slowly replacing those 
estimates with true costs the closer to the goal you get, A* will inevitably find the fastest route 
from start to finish in far faster time and with less memory than more simple methods.

Copyright: Joel King



Works Cited

Rios, L. H. O., & Chaimowicz, L. (2011). PNBA*: A parallel bidirectional heuristic search 
algorithm. In ENIA VIII Encontro Nacional de Inteligê ncia Artificial. 

Russell, S. J., & Norvig, P. (2010). A* search: Minimizing the total estimated solution cost. In 
Artificial Intelligence: A Modern Approach (3rd ed., pp. 93-99). Upper Saddle River, NJ: 
Prentice-Hall.

Copyright: Joel King


